pyml.utils.accuracy.RegressionAccuracy#

class RegressionAccuracy[source]#

Bases: _Accuracy

Subclass of _Accuracy tailored for regression models.

Calculates accuracy based on precision and compares predictions to ground truth.

Variables:

precision (float) – Precision value used for regression accuracy calculation.

Initialize RegressionAccuracy instance.

Methods

__init__

Initialize RegressionAccuracy instance.

calculate

Calculate accuracy based on predictions and ground truth values.

calculate_accumulated

Calculate accumulated accuracy.

compare

Compare predictions to ground truth values for regression accuracy.

init

Initialize regression accuracy calculation parameters.

reset

Reset variables for accumulated accuracy.

calculate(predictions, y)#

Calculate accuracy based on predictions and ground truth values.

Return type:

float

Parameters:
  • predictions (numpy.ndarray) – Predicted values.

  • y (numpy.ndarray) – Ground truth values.

Returns:

Calculated accuracy.

Return type:

float

calculate_accumulated()#

Calculate accumulated accuracy.

Return type:

float

Returns:

Accumulated accuracy.

Return type:

float

compare(predictions, y)[source]#

Compare predictions to ground truth values for regression accuracy.

Return type:

ndarray

Parameters:
  • predictions (numpy.ndarray) – Predicted values.

  • y (numpy.ndarray) – Ground truth values.

Returns:

Array of comparison results.

Return type:

numpy.ndarray

init(y, reinit=False)[source]#

Initialize regression accuracy calculation parameters.

Return type:

None

Parameters:
  • y (numpy.ndarray) – Ground truth values.

  • reinit (bool, optional) – Reinitialize precision if True, by default False

reset()#

Reset variables for accumulated accuracy.

Return type:

None